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Dynamical theory of diffraction applicable to crystals with any kind of small distortion.
By Sario Taxaci, H. H. Wills Physics Laboratory, University of Bristol, Bristol, England

(Received 21 September 1961 and in revised form 28 May 1962)

Several developments of the dynamical theory which can
be applied to a distorted crystal have been published
(Cowley & Moodie, 1957; Kato, 1960, 1962; Howie &
Whelan, 1960, 1961 and 1962) and some of them have
been successfully applied to explain some features in the
images of dislocations in eclectron micrographs or X-ray
diffraction topographs. However, these theories are based
on the ‘lamellar’ approach which in practice confines
its application to a distortion which depends only on
one coordinate, i.e. to a crystal which can be divided
into a set of lamellae each of which has a perfect two-
dimensionally periodic structure which may, however,
differ from lamella to lamella. Howie & Whelan (1960,
1961) have avoided this restriction by introducing the
‘column’ approximation (Hirsch, Howie & Whelan, 1960),
i.e. they divided the crystal into columns nearly per-
pendicular to the lamellac and applied the theory to
each column individually. For electron waves where the
Bragg angle is small and the crystal thin, this approx-
imation is good enough for practical purposes, as will
be seen below, but it could not be applied for X-rays
except to some simple distortions. A new development
extending the dynamical theory to include any small
distortion inside the crystal is here outlined.

In the Ewald-Laue theory for a perfect crystal, a wave
field in the crystal is expressed by a Bloch function as

p(r)= X ypexp (—2niK,. 1), (1)
h

where h is a reciprocal-lattice vector, kp’s are the wave
vectors connected with each other by the relation

kp=k,+h, (2)

and vy is invariant with respect to the space coordinates.
The wave actually excited in the crystal by the incident
wave can be expressed by a sum of two or more of these
wave fields with slightly different values of kK, As a
result, the incident and diffracted waves show a kind of
beat effect or amplitude (and phase) modulation (‘Pendel-
losung’ effect (Ewald, 1933; Kato & Lang, 1959)).

In the present theory, the wave in the crystal is
expressed by a single sum (1), but now yj is considered
as a slowly varying function of position instead of being
a constant. This allows a single y, to represent all the
possible modulations of the hth diffracted wave inside
the crystal. It also gives a slight ambiguity to the defini-
tion of ky which is now left to an appropriate initial choice.
A convenient choice is that k, satisfies the tangential
continuity condition with the incident wave vector at
the entrance surface and its magnitude is

kol =k=nK, (3)

where K is the wave number in vacuum and » is the mean
refractive index. The crystal potential x(r)=V(r)/E,
V(r) being the electrostatic potential in the erystal and
E the accelerating voltage of the electron, can be ex-
panded in a Fourier series based on the reciprocal-lattice
vectors of the undistorted crystal, as long as the distortion

is so slight that atoms within a single unit cell can be
regarded as uniformly displaced. The coefficient y, still
given by

IR = l/v\. llz(r) exp (2n¢th.r)dr , (4)

C

where v is the volume of a unit cell, has phase varying
slowly from point to point in the crystal, its magnitude
remaining constant.

We may substitute the wave function (1) with slowly
varying yx(r) into the Schrédinger equation. If we then
assume that (a), both za(r) and ya(r) are constant within
a unit cell, and that, (b), V2ypx(r) is negligible compared
with terms proportional to yx(r) or their first derivatives,
owing to the slow variation of these functions, we obtain
the following simultaneous differential equations

Syn(r)/osy = 127K Bryn(r) —inKhZ', yh-n(C)pre(r);  (5)
=

here 0/os, signifies differentiation with respect to the
space coordinate parallel to the direction of kx, and 8y
the resonance error defined by

Brn=(1/2K?) (K} —k*) (6)

indicating the deviation from the exact fulfilment of the
Bragg condition for the lattice plane h (half of that
defined by Laue (1960)). A similar sct of equations is
obtained for X-rays with a slight complication on account
of the vector character of the wave.

The validity of the assumption (a) is evident for a
slightly distorted crystal. The exact proof of validity
of (b) is not easy. However, for a perfect crystal with a
plane wave incident, (b) corresponds to the assumption
that the difference in the normal components of the
wave vectors of corresponding waves in vacuum and in
the crystal is negligible compared with the normal
component itself. This assumption is very well satisfied
in usual experimental conditions for both X-rays and
electrons except when the wave vector is almost parallel
to the surface. Hence this assumption would not be a
serious obstacle to the application of the theory to slightly
distorted crystals.

Equation (5) includes the result obtained by the
lamellar theory as a special case. When y,(r) and there-
fore yp(r) depend only on one coordinate normal to
the entrance surface, say z, (5) reduces to

dyn(2)/dz = i23(K [4) Bryn(2) —iﬂ(K/*/n)’Z’ tr—n{2)pn-(2) (7)
W h

where y;, is the cosine of the angle between k; and the
z-axis. This equation is essentially the same as that given
by the lamellar theory (Sturkey, 1960; Howie & Whelan,
1960, 1961).

The solution of (5) in this general form may be very
difficult. However, in the case of two strong waves, which
is the most important in the diffraction problem, two
possible methods of solution are present. For two waves
(5) reduces to
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dyo(r)/0sy = — inK yj(r)ya(r) , } (8)
31#), (r)/ash = —inKZh(r)y;o(r) + i2nKﬂhw;,(r)

which hold also for X-rays, if yx(r) is read as the Fourier
coefficient of 4n times the polarizability of the crystal
with appropriate polarization factor. The boundary
conditions at the entrance surface are expressed in
similar form as in the ordinary theory, namely

Yo(re) = Py(re) }

wn(re) =0 ®

where r, is a position vector on the entrance surface, and
¥y(re) the amplitude of the incident wave in vacuum.
The fact that both sides of (9) are slowly varying func-
tions of position instead of constants is important;
incident waves other than plane waves can be treated as
well. One of the methods of solution of (8) is to convert

"V’
I
i

V‘V "V‘"

i
i
il

ko kn

Fig. 1. Schematic drawing showing methods of solution of
equation (8). The upper arrows and one of the lower ones
are in the direction of the incident wave or of K,, and the
other lower onc in that of k. The solutions at P on the
exit surface are determined by the part of the incident
wave falling between 4 and B, and can be calculated either
by the method of Riemann functions or by successive
numerical calculations at each mesh point.
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it into second-order partial differential cquations for
v, and wy, each of which have a hyperbolic form which
is capable of solution by the method of Riemann func-
tions. This method gives the solution at a point P
inside or on the exit surface of the crystal by a surface
integral over 4B (Fig. 1) where 4 and B are points on
the entrance surface such that 47> and BP are, respec-
tively, parallel to k, and k. The integral involves ¥ (r,)
and the Riemann function for this particular point P
given by the values of yn, y; and fj inside the triangle
PAB, and its derivatives. This result is of theoretical
importance, since it shows that only values of the
amplitude of the incident wave falling between 4 and I3
contribute to the wave function at P, providing a
theoretical basis for the column approximation in the
electron case where the triangle ’AB reduces to a thin
column owing to the small Bragg angle. Equation (8)
is also capable of a numerical solution. It includes only
the derivatives oy,/0s, and oyp/dsp, out of four possible
first-order ones. This shows that if we divide the triangle
PAB by a fine mesh with axes parallel to k, and kp,
as shown in Fig. 1, the value of y, at P, say, is deter-
mined by the values of p, and y, at @, and that of yy
at P, by those of y, and y;, at R and so on. The repetition
of this process from the top surface 4B to the bottom
will give the solution at P.
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Thin films of the rutile modification of titanium dioxide
have been grown by Ashbee & Smallman (1962) on the

(100) surfaces of TiC single crystals by oxidation in air
at pressures ~ 10=3 cm. in the temperature range 800



